electromagnetic waves

may the force be with you

A familiar example may help you understand the vibrating electric and magnetic fields that make up electromagnetic waves. Consider a bar magnet, like the one in the Figure 1.1. The magnet exerts magnetic force over an area all around it. This area is called a magnetic field. The field lines in the diagram represent the direction and location of the magnetic force. Because of the field surrounding a magnet, it can exert force on objects without touching them. They just have to be within its magnetic field. Q: How could you demonstrate that a magnet can exert force on objects without touching them? A: You could put small objects containing iron, such as paper clips, near a magnet and show that they move toward the magnet. An electric field is similar to a magnetic field. It is an area of electrical force surrounding a positively or negatively charged particle. You can see electric fields in the following Figure 1.2. Like a magnetic field, an electric field can exert force on objects over a distance without actually touching them.


how an electromagnetic wave begins

An electromagnetic wave begins when an electrically charged particle vibrates. The Figure 1.3 shows how this happens. A vibrating charged particle causes the electric field surrounding it to vibrate as well. A vibrating electric field, in turn, creates a vibrating magnetic field. The two types of vibrating fields combine to create an electromagnetic wave.



what are electromagnetic waves

Electromagnetic waves are waves that consist of vibrating electric and magnetic fields. Like other waves, electro- magnetic waves transfer energy from one place to another. The transfer of energy by electromagnetic waves is called electromagnetic radiation. Electromagnetic waves can transfer energy through matter or across empty space. Click image to the left or use the URL below. URL: Q: How do microwaves transfer energy inside a microwave oven? A: They transfer energy through the air inside the oven to the food.

sources of electromagnetic waves

The most important source of electromagnetic waves on Earth is the sun. Electromagnetic waves travel from the sun to Earth across space and provide virtually all the energy that supports life on our planet. Many other sources of electromagnetic waves depend on technology. Radio waves, microwaves, and X rays are examples. We use these electromagnetic waves for communications, cooking, medicine, and many other purposes.

how an electromagnetic wave travels

As you can see in the Figure 1.3, the electric and magnetic fields that make up an electromagnetic wave are perpendicular (at right angles) to each other. Both fields are also perpendicular to the direction that the wave travels. Therefore, an electromagnetic wave is a transverse wave. However, unlike a mechanical transverse wave, which can only travel through matter, an electromagnetic transverse wave can travel through empty space. When waves travel through matter, they lose some energy to the matter as they pass through it. But when waves travel through space, no energy is lost. Therefore, electromagnetic waves dont get weaker as they travel. However, the energy is diluted as it travels farther from its source because it spreads out over an ever-larger area.

electromagnetic wave interactions

When electromagnetic waves strike matter, they may interact with it in the same ways that mechanical waves interact with matter. Electromagnetic waves may: reflect, or bounce back from a surface; refract, or bend when entering a new medium; diffract, or spread out around obstacles. Electromagnetic waves may also be absorbed by matter and converted to other forms of energy. Microwaves are a familiar example. When microwaves strike food in a microwave oven, they are absorbed and converted to thermal energy, which heats the food.

instructional diagrams

No diagram descriptions associated with this lesson


electromagnetic waves need a medium in order to transfer energy.

a. true

-->  b. false

electromagnetic waves

a) create force fields.

b) exert force over a distance.

c) can travel through outer space.

-->  d) all of the above

electromagnetic waves are

a) surface waves.

-->  b) transverse waves.

c) longitudinal waves.

d) none of the above

when electromagnetic waves strike matter they may be

a) absorbed.

b) reflected.

c) refracted.

-->  d) any of the above

electromagnetic waves may be converted to other forms of energy.

-->  a. true

b. false

diagram questions

No diagram questions associated with this lesson