properties of nonmetals

As their name suggests, nonmetals generally have properties that are very different from the properties of metals. Properties of nonmetals include a relatively low boiling point, which explains why many of them are gases at room temperature. However, some nonmetals are solids at room temperature, including the three pictured above, and one nonmetalbromineis a liquid at room temperature. Other properties of nonmetals are illustrated and described in the Figure 1.1.

what are nonmetals

Nonmetals are elements that generally do not conduct electricity. They are one of three classes of elements (the other two classes are metals and metalloids.) Nonmetals are the second largest of the three classes after metals. They are the elements located on the right side of the periodic table. Q: From left to right across each period (row) of the periodic table, each element has atoms with one more proton and one more electron than the element before it. How might this be related to the properties of nonmetals? A: Because nonmetals are on the right side of the periodic table, they have more electrons in their outer energy level than elements on the left side or in the middle of the periodic table. The number of electrons in the outer energy level of an atom determines many of its properties.

reactivity of nonmetals

Reactivity is how likely an element is to react chemically with other elements. Some nonmetals are extremely reactive, whereas others are completely nonreactive. What explains this variation in nonmetals? The answer is their number of valence electrons. These are the electrons in the outer energy level of an atom that are involved in interactions with other atoms. Lets look at two examples of nonmetals, fluorine and neon. Simple atomic models of these two elements are shown in the Figure 1.2. Q: Which element, fluorine or neon, do you predict is more reactive? A: Fluorine is more reactive than neon. Thats because it has seven of eight possible electrons in its outer energy level, whereas neon already has eight electrons in this energy level. Although neon has just one more electron than fluorine in its outer energy level, that one electron makes a huge difference. Fluorine needs one more electron to fill its outer energy level in order to have the most stable arrangement of electrons. Therefore, fluorine readily accepts an electron from any element that is equally eager to give one up, Click image to the left or use the URL below. URL:



why most nonmetals cannot conduct electricity

Like most other nonmetals, fluorine cannot conduct electricity, and its electrons explain this as well. An electric current is a flow of electrons. Elements that readily give up electrons (the metals) can carry electric current because their electrons can flow freely. Elements that gain electrons instead of giving them up cannot carry electric current. They hold onto their electrons so they cannot flow.

instructional diagrams

No diagram descriptions associated with this lesson


examples of nonmetals include

a) carbon.

b) phosphorus.

c) sulfur.

-->  d) all of the above

there are fewer nonmetals than there are elements in any other class.

a. true

-->  b. false

properties of nonmetals include

a) high boiling point.

b) ability to conduct heat.

-->  c) dull appearance.

d) none of the above

all nonmetals are very reactive.

a. true

-->  b. false

nonmetals are located on the right side of the periodic table.

-->  a. true

b. false

most of the elements that make up the human body are nonmetals.

-->  a. true

b. false

diagram questions

No diagram questions associated with this lesson